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The Cassini spacecraft has provided data on over twenty satellites orbiting Saturn. In this study we
update the shape measurements derived from imaging data of nearly all the observed regular satellites
(those with low eccentricities and inclinations) and briefly discuss some of the implications of their prop-
erties. In particular, the improved data show that Rhea’s shape is hydrostatic.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and methods

Knowledge of the shapes and sizes of satellites is crucial for
determining their mean densities, making geophysical interpreta-
tions, and producing maps. The 4-year nominal mission of the Cas-
sini spacecraft has now provided data on more than 20 satellites.
This work updates most of the previously published shapes and
sizes, and briefly reviews some of the newer shape-related inter-
pretations. The larger ellipsoidal satellites have been imaged mul-
tiple times both during “targeted” flybys which are less than a few
thousand kilometers, and more often during other opportunities
typically at a few hundred thousand kilometer range. The smaller
satellites, excepting Phoebe, have been seen close-up at irregular
intervals as the spacecraft orbit and data taking allow. Phoebe
was seen in detail for more than one rotation as the Cassini space-
craft passed by on its way to Saturn. The other outer, small satel-
lites are too small and too distant to resolve from the Cassini orbits.

The shapes and sizes of ellipsoidal satellites are primarily mea-
sured by limb coordinates in the Imaging Science Subsystem (ISS)
data (Porco et al., 2004). The measurement techniques are de-
scribed in Thomas et al. (1998, 2007a). These involve sub-pixel
modeling of the bright edge of an illuminated object. Precisions
of limb coordinate measurements, that is, the reproducibility of
the image plane coordinates around the limb, can reach better than
0.1 pixels. Accuracies, checked by images of greatly differing reso-
lutions or with independent data, can approach 0.15 pixels. Pixel
scale uncertainties are generally 10 or better (a few kilometers
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out of >100,000 km) and do not materially affect the measured
sizes. The solutions for shapes are affected by how well an ellipse
center is fit for each view; the rougher the object or the shorter the
limb arc, the less accurate is the calculated center and the less
accurate the overall ellipsoidal solution. Views with more than
180° of limb arc, such as transits of the satellite in front of Saturn,
those at very low phase, or those with Saturn shine are valuable in
that they can set particular projected diameters with very high
accuracy and thereby help stabilize the fit centers of all other
views. The geometry of projected limbs of ellipsoids is described
in detail in Dermott and Thomas (1988). Stereogrammetric control
point solutions are used to verify some aspects of the topography,
such as long wavelength departures from the mean fit ellipses, and
to confirm spin models. Control point solution residuals for Tethys
suggest that the current spin model may be up to a degree in error.
We have not addressed this problem in detail, as limb solutions for
ellipsoidal objects are trivially affected by 1° errors in assumed
view points (Dermott and Thomas, 1988).

Shape determination for the irregularly-shaped objects is some-
what more involved. The first step is solution of stereogrammetric
control points. Such solutions require accurate spin models, which
for most objects in synchronous rotation are not an issue. They are,
however, an issue for Janus and Epimetheus because they swap or-
bits every 4 years (which induces changes in rotation periods) and
have forced librations. The control point solutions were used to
find the forced libration of Epimetheus and Janus (Tiscareno
et al,, 2009) and provided the key step in making those shape mod-
els much less uncertain than previous determinations. The control
point solutions provide a network of relative three-dimensional
coordinates on the surface. Limb and terminator positions help fill
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out the remainder of the shape model. Hyperion rotates chaotically
and so far has been modeled separately for several flybys, or seg-
ments of flybys, in order to combine portions of shape models to
generate a global one (Thomas et al., 2007b). The shape models
are arrays of gridded latitude-longitude-radius values, usually at
2° or 5° spacing (also writable as triangular x, y, z coordinate sets
called “plate” models). We report ellipsoidal fits to these shape
models for convenience of approximate descriptions of the objects.
The fit axes have been rescaled to yield a mean radius (radius of
sphere of equal volume) the same as that of the actual shape mod-
el. Moments of inertia of irregularly-shaped satellites calculated
from the ellipsoid axes are likely to deviate from those calculated
directly from the shape model.

Uncertainties in the fit ellipsoids have been calculated based on
the geographical coverage and resolution. This error estimation
method seeks all possible combinations of axes that give residuals
less than the minimum rms residuals increased by the expected
measurement accuracy (discussed further in Thomas et al.
(2007a)). These uncertainties should be considered as two-sigma
values. Uncertainties in derivative quantities, such as (a—c) are tab-
ulated during the search of acceptable solutions, and do not neces-
sarily follow directly from listed uncertainties in the individual
axes.

Some simple shape and geophysical parameters are used to
compare these objects to ideal, hydrostatically relaxed shapes.
These parameters are derived for fluid objects (Chandrasekhar,
1969) and although idealized, apply well to bodies that effectively
relax on geological time scales. “Equilibrium” shapes can involve
non-fluid parameters (Holsapple, 2004), but in this work for ellip-
soidal objects we refer to the fluid approximations only. The
parameter F = (b-c)/(a-c), where a, b, c are the Saturn-facing, or-
bit-facing, and polar semi-axes, is used to test for hydrostatic
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shape. An equilibrium F is 0.25 for moderate rotation speeds; for
close, rapidly rotating satellites such as Mimas, F decreases slightly
(Table 2 and Dermott and Thomas, 1988). For hydrostatic bodies,
(a-c) increases with lower density and higher spin rate (Chandra-
sekhar, 1969; Dermott, 1979), and it decreases if there is a central
concentration of mass such as that resulting from differentiation.
Dynamic heights (Vanicek and Krakiwsky, 1986; Thomas, 1993)
are close proxies for distance above a reference equipotential
surface.

The goal of this work is to update the shape information on
saturnian satellites and to note changes in related interpretations.
These results supersede the great majority of those in Thomas et al.
(2007a) and Porco et al. (2007); comparisons are listed in Supple-
mentary material. Dimensions of some satellites have been im-
proved by more recent imaging that widens the geographic
coverage and thereby restricts the global fit shape better than ear-
lier solutions. Uncertainties in fit dimensions are reduced, and thus
uncertainties in quantities such as mean densities are lower, and
any related interpretations are improved.

2. Summary results

Tables 1-3 list the results for the ellipsoidal and irregularly-
shaped satellites. Fig. 1 shows an example of how the shape results
evolved with increasing numbers of images. Tethys is taken as an
example because it is a moderately rough satellite and early
images did not provide a good set of crossing limb tracks, which re-
sulted in a somewhat unstable solution. The roughness of the limb
affects the center-finding for each projected ellipse, with cascading
effects on the three-dimensional shape solution. The spike in shape
measures (8th image) occurred with the addition of a high resolu-
tion image (N1514130023) that dominated the residuals and

Table 1
Ellipsoidal satellite shapes.
Satellite a b c Mean radius a-c, km p, kgm™3 g cms? Im Data
Mimas 207.8+0.5 196.7 £ 0.5 190.6 £ 0.3 198.2+0.4 17.2+05 1149+7 5.9-6.5 36 21,527
Enceladus 256.6 £0.3 251.4+02 2483 +0.2 252.1+0.2 83+03 1609 5 11.0-114 37 25,602
Tethys 538.4+0.3 5283+1.1 526.3+0.6 531.0+ 0.6 12.1£09 985 +3 14.3-14.7 32 20,789
Dione 563.4+0.6 561.3+0.5 559.6 + 0.4 561.4+0.4 3.8+0.7 1478 +3 22.8-23.1 45 33,229
Rhea 765.0+0.7 763.1+0.6 762.4+0.6 763.5+0.6 2609 1237 +3 25.9-26.2 45 34,690
lapetus 745.7 £2.9% 745.7 +2.9* 7121 1.6 7343 +2.8 33.6+2.8 1088 + 13 22.0-22.3 69 18,280
a—c (all in kilometers) are the Saturn-facing, orbit-facing, and polar radii. Uncertainties are the two-sigma values of estimated accuracies as described in text.
Mean radius is the radius of a sphere of equivalent volume.
p, mean density, determined from masses reported in Jacobson et al. (2006).
g is surface acceleration. Range of values derives from different radii and differing tidal effects.
Im: number of images used.
Data: number of individual limb coordinates.
¢ Solution given is for an oblate spheroid fit. Triaxial fit has semi-axes of 746.1, 745.3, 712.1 km.
Table 2
Satellite equilibrium parameters.
Satellite a-c, km (a-c)h, km Fons Fpred A(b-c), km HAdh, km DAdh, km rms, km
Mimas 17.2+£0.6 19.7 0.35 +.02 0.21 24 1.7 14 0.70
Enceladus 83103 8.0 037 .04 0.23 1.1 0.5 1.2 0.44
Tethys 12.1+£09 14.7 0.17 .15 0.24 0.84 1.0 0.6 1.17
Dione 3.8+0.7 4.9 0.45+.20 0.25 0.8 0.6 0.5 0.72
Rhea 26109 2.9 0.27+.10 0.25 0.05 0.15 0.21 1.14
lapetus 33.6+2.8 0.01 0.96 +.03 0.25 241 139 16.4 3.65

(a-c)h = (a-c) predicted for homogeneous model.

Fops = (b—c)/(a—c).

Fprea = F for a homogeneous, relaxed object at the particular orbital distance.
A(b—C) is (Fops— pred) * (a—c).

HAdh is range of dynamic heights for homogeneous model.

DAdh is range of dynamic heights for differentiated model, mantle density 930 kg m~> and core density 3000 kg m 3.

3

rms is root mean square of limb fit residuals (observed — predicted radius) in kilometers for all data.
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Table 3

Properties of irregularly-shaped saturnian satellites.
Satellite a b c 'm Mass p, kgm™ g cms 2
Pan 17219 157+1.3 104 £0.84 141+13 0.495 +.075 420 £ 150 0.01-0.18
Daphnis 43+0.7 4109 3.2+08 3.8+0.8 0.0077 +.0015 340 + 260 0.01-0.04
Atlas 204+1.2 17.7 £0.7 94+0.8 15.1+£0.9 0.66 + 0.045 460+ 110 0.02-0.20
Prometheus 67.8 3.1 39.7+£3.1 29.7+1.9 43.1+2.7 15.95+£0.15 480 £ 90 0.13-0.58
Pandora 52.0+1.8 40.5+2.0 32.0+0.9 40.7+1.5 13.71 £0.19 490 + 60 0.26-0.60
Epimetheus 649 +2.0 57.0+3.7 53.1+0.7 58.1+1.8 52.66 + 0.06 640 + 62 0.64-1.1
Janus 101.5+1.9 925+1.2 763+1.2 89.5+1.4 189.75 +.0006 630+ 30 1.1-1.7
Methone 1.6+0.6 1.6+0.6 1.6 +0.6 1.6+0.6
Pallene 2.9+0.6 2.8+0.8 20+04 2506
Telesto 16.3+£0.5 11.8+0.3 10.0+£0.3 124+04 -
Calypso 15103 11.5+2.2 7.0+0.6 10.7 £0.7 -
Polydeuces 1.5+£0.6 1.2+04 1.0£0.2 1.3+04
Helene 21.7+0.5 19.1+0.3 13.0+£0.3 17.6+0.4
Hyperion 180.1 £2.0 133.0+£4.5 102.7 £4.5 135+4 561.99 5 544 + 50 1.7-21
Phoebe 1094 +1.4 108.5+0.6 101.8+0.3 106.5+0.7 829.2+1 1638 +33 3.8-5.0

Masses for Janus, Epimetheus, Atlas, Prometheus, and Pandora are from Jacobson et al. (2008). Masses for Pan and Daphnis are from Porco et al. (2007). Mass of Hyperion from
Thomas et al. (2007b). Mass of Phoebe is from Jacobson et al. (2006). Masses are in units of 10'° g.
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Fig. 1. Tethys axial fits as a function of increasing number of images used in
solution. Tethys F value (b-c)/(a-c) with increasing number of images. Images are in
order in which they were added to the data set; the first four did not provide
crossing tracks and gave an unstable solution.

which had slightly less than a 180° limb arc, thus pushing the solu-
tion toward the slightly off-center result for that image. Once high
resolution images with somewhat more than 180° of limb arc pin-
ned the dimension at one view, the solution did not vary much
with further data. Fig. 2 shows ground tracks of limb data on all
the satellites measured.

2.1. Ellipsoidal objects: summary

Previous work had suggested that all these objects at sometime
had approached equilibrium shapes, wherein the surface ap-
proaches that of a fluid body shaped solely by gravity, tidal, and
rotational forces (Thomas et al., 2007a). Fig. 3 illustrates the rela-
tion of the measured (a-c) of the ellipsoidal satellites to that ex-
pected for hydrostatically relaxed objects of the observed mean

density and mean radius with homogeneous interiors, and for dif-
ferentiated models with a core density of 3000 kg m > and a man-
tle density of 930kg m 3. This shape parameter suggests all
saturnian ellipsoidal satellites might meet some observational cri-
teria of hydrostatic shapes for some interior model. However, the F
parameters and the range of dynamic heights (Table 2), suggest
limits on such interpretations. In particular, Enceladus’s (a-c) is
best fit by a homogeneous interior model (Thomas et al., 2007a),
yet the ongoing activity and relaxation of short wavelength topog-
raphy are very strong geological reasons to expect that internal
heating has led to a differentiated interior.

Mimas’s shape might suggest interior mass concentration
(Dermott and Thomas, 1988; Eluszkiewicz, 1990), but again the F
parameter value limits what can be inferred using an assumption
of hydrostatic equilibrium. The newer values of semi-axes of Mi-
mas differ from the previous ones by 0.4 km or less, and the discus-
sion in Thomas et al. (2007a) still applies: Mimas’s b axis is too
large for an equilibrium shape. Although Mimas is a triaxial ellip-
soid, not the product of impact shaping, and approached an equi-
librium form, interpreting the interior configuration from the
shape is limited by this small departure from hydrostatic shape.
Mimas’s interior must have been highly rigid for most of its history
for it to sustain a free eccentricity of ~0.02 (McKinnon and Barr,
2007), and thus maintaining a slight departure from a hydrostatic
shape is reasonable.

Iapetus stands out as having a shape far from equilibrium with
its current spin period (Fig. 3). Its oblate spheroid shape probably
was frozen at a much shorter spin period (~16 h; Castillo-Rogez
et al., 2007). Our updated shape for lapetus is slightly different
from the earlier reported values ((a-c) of 33.5 km vs. previous
35.0 km, estimated uncertainty 3.6 km), but is well within the pre-
viously estimated uncertainties and invites no significant change
to the conclusions of Castillo-Rogez et al. (2007).

Dione’s fit axes have changed slightly (0.3-0.4 km) from those
previously reported. As shown in Table 2 and Fig. 3, Dione’s (a-c)
is smaller than the homogeneous predicted value and thus might
suggest interpretation as a differentiated object (Fig. 3). However,
the F parameter of 0.45 suggests that Dione may deviate enough
from a hydrostatic shape that inferences on the interior may be ris-
ky as with Enceladus. The calculations of the range of dynamic
heights confirms the difficulty of discriminating between interior
models, as there is only a 100 m difference in dynamic height
ranges between the homogeneous and differentiated models. The
shape by itself suggests that the object has been close to hydro-
static equilibrium, but more detailed conclusions require higher
order knowledge.
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Fig. 2. Ground tracks of limb data on ellipsoidal satellites.

2.2. Ellipsoidal objects: Tethys and Rhea global shapes

Measured semi-axes for Tethys have changed from those in
Thomas et al. (2007a) by 2.0, 2.8, and 1.2 km. Tethys had only se-
ven useful images in the prior work, and subsequent data have
greatly reduced the uncertainties. The measured shape of Tethys
is close to hydrostatic, and the (a-c) suggests, with the caveats de-
scribed above, as perhaps favoring some differentiation. The differ-
entiated model supports less topography than the homogeneous
one. However, given the roughness of the surface, and likely tec-
tonic effects on crustal homogeneity and thickness, it is not possi-
ble to choose an interior model. The mean density of Tethys is
sufficiently low that a core of density 3000 kg m—> would be only
~160 km in radius. If one instead assumes a greater crust/core dif-
ference, with crustal density of 910kgm™> and a core of
3500 kg m 3, the core size increases by only ~5 km.

It has not been clear if Rhea is a homogeneous or differentiated
object, or whether it is in hydrostatic equilibrium (less et al., 2007;
Anderson and Schubert, 2008; Asmar et al., 2009). Previous shape
data (that used by Asmar et al. (2009)) had the c axis 0.6 km larger
than the b axis, although uncertainties on each were at least this
amount. The (a-c) was also nominally considerably larger than a
homogeneous model would predict. As a result, the shape provided

no insight into interpretations of the gravity data, such as support-
ing an assumption of hydrostatic equilibrium. The more complete
coverage (45 images vs. previous 22, and generally somewhat
higher resolution) shows a hydrostatic shape, with an (a-c) very
close to the homogeneous model value, and a value of F consistent
with hydrostatic equilibrium. There is no significant difference in
the calculated range of dynamic heights for the differentiated
and homogeneous models of Rhea. The low mean density renders
effects of any mass concentration in a core small and difficult to
detect at this level of accuracy. These data indicate that hydrostatic
models of Rhea are appropriate, and unusual internal mass distri-
butions are not necessary.

2.3. Ellipsoidal objects: local topography

Limb profiles, if properly oriented, can be useful in examining
local and regional phenomena. Because the profiles are envelopes
over the highest topography, they are most useful for examining
large depressions, isolated positive relief forms, and regional
trends where the ambiguity of the exact location of the limb along
the line of sight is reduced or is not of a relevant scale. Tethys pro-
vides two kinds of application of limbs to “local” topography: large
crater profiles and cross sections of the global tectonic feature
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assume mantle density of 930 kg m—3, core density of 3000 kg m 3.

Ithaca Chasma. Odysseus crater on Tethys is over 400 km in diam-
eter and previous work (Schenk, 1989; Moore et al., 2004) showed
it to have ~8 km of relief. Limb profiles (Fig. 4) show the crater
floor to reach ~6 km below the undisturbed terrain, and that Odys-
seus has nearly 10 km maximum relief as the rim crest rises a few
km above the surroundings. Significant rim topography extends
~100 km from the rim crest.

The nearly global tectonic trough Ithaca Chasma (Fig. 5) has
been investigated by terrain models derived from stereogramme-
try (Giese et al., 2007); their flexure modeling concentrated on a
section of the Chasma slightly north of the equator. Fig. 5 shows
samples of the changing cross sections of this form at different lat-
itudes, and emphasizes that the segment north of the equator is
distinct from the narrower part south of the equator. These in turn,
from the images, are only two of several morphologically distinct
parts of the Ithaca Chasma system. The transition between the
two sections sampled in Fig. 5 is abrupt. These variations along
the trough suggest different histories and/or different mechanical
properties in different parts of the crust. Such variations emphasize
some of the limits of symmetric global geophysical models.

The 500-km diameter basin Engelier on lapetus is crossed by sev-
eral limb profiles (Fig. 6). These data show the depth of this feature
also exceeds 10 km, with a central peak nearly 9 km in height above
the crater floor reaching essentially the level of surrounding terrain.
Central peaks onicy saturnian satellites can reach relative heights far
larger than those in lunar craters (Dombard et al., 2007). The “back-
ground” surface is rough on the scales of 2-3 km, which prevents
more detailed examination of rim-related topography.

3. Irregularly-shaped satellites

Those objects too small to relax viscously have shapes that are
probably largely the result of impact effects, except for a few ring-
related ones that may still include effects of accretion (Porco et al.,
2007; Charnoz et al., 2007). Even for those objects that are uncon-
solidated and far too small to have viscous effects, mass movement
and the ability of angle-of-repose effects to support topography
mean objects may assume a large variety of forms (Richardson
et al., 2005; Minton, 2008).
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Fig. 4. Limb profiles on Odysseus crater, Tethys. (a) Portions of profiles with ISS
image numbers. Residuals are the radial difference between observed limb
coordinate and the limb predicted from the best ellipsoidal solution and the image
geometry. (b) Predicted traces of profiles on portion of global image mosaic (mosaic
from Roatsch et al. (2009)). Note profiles C and D essentially overlie one another.
Vertical exaggeration is 30.

Since the compilation in Porco et al. (2007), the major advance
in small satellite shapes has come through solution of the forced
librations of Janus and Epimetheus (Tiscareno et al., 2009). The
resulting new shape models change the mean radii of each satellite
by less than 1.5 km, but some individual fit axes have changed by
several kilometers. The mean densities of Janus and Epimetheus
are indistinguishable (Table 3), and are good to better than 10%.
The previously determined density for Epimetheus of
690+130kgm >3 (Porco et al, 2007) has been refined to
640 + 30 kg m~> with the better determined shape. Assuming a
uniform density, the shape of Janus may imply (uncertainties in
the shape allow a range of orientations) a maximum moment
direction offset from the sub-Saturn orientation. Because the libra-
tion model works, the moment direction from a homogeneous
model is likely in error, which would imply some internal mass
inhomogeneities (Tiscareno et al., 2009).

Some fit ellipsoidal axes of Phoebe have been updated by more
than a kilometer from the values in Porco et al. (2005); however,
the mean radius is little changed (0.2 km). The nearly oblate spher-
oid shape of Phoebe may retain characteristics of an early, relaxed
object. Johnson et al. (2009) noted that Phoebe’s axes are close to
those expected for a relaxed object of its mean density and current
spin period, and that even addition of the topography expected
from double the current large crater population to an initial oblate
object would still on average allow a fit shape to reflect the original
axial ratios. The (a-c) value for Phoebe, if it does reflect a hydro-
static equilibrium condition, is most compatible with some degree
of mass concentration toward the center. Phoebe’s size makes it a
borderline case for viscous relaxation and/or differentiation
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Vertical exaggeration is 12.

(Johnson and McGetchin, 1973), but early formation could provide
heating from 2®Al, and with some combinations of composition and
porosity, relaxation and even differentiation might have occurred
(Johnson et al., 2009).

The shapes and mean densities of some ring-related satellites
may preserve attributes of their accretionary history. First, Porco
et al. (2007) note that Pan, Atlas, Prometheus and Pandora nearly
fill their Roche lobes, that is, very little disturbance is necessary
for material to be lost from the satellite’s surface into Saturn orbit.
Such material would probably reaccrete and possibly follow many
cycles initiated by continuing high-velocity impacts. This condition
is exemplified in part by the low gravity at their long ends (Table
3). Second, Charnoz et al. (2007) noted that the equatorial ridges
on Pan and Atlas match expectations of ring material accretion
onto these satellites. The work here has only very slightly changed
the previous shape solutions of these objects and largely empha-
sizes the distinction of some of the ring-related satellites from ob-
jects such as Epimetheus and Janus. The latter two objects have
higher surface accelerations and smaller relative ranges of surface
gravity than the ring-related objects, and have more obvious
shape-modifying large craters (Table 4).

The largest craters can affect the shapes of satellites, but there is a
widerange in the relative sizes of the largest craters on these objects.
Table 4 lists those for which image coverage is good enough to tab-
ulate most large craters. Epimetheus has the largest relative-sized
crater, and it provides a flattened south polar region and probably
determined the rotational pole position in the body. Nominally,
Hyperion’s largest crater should be a significant modifier of the sa-
tellite’s form, but the shallow relative depth, and placement on the
elongated object, means that it does not create a large concave face.
The visible craters are likely the modest modifiers of shapes initiated
by more catastrophic events for some of these objects. Small scale
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Fig. 6. Limb profile residuals across lapetus crater Engelier. (a) Profiles with image
numbers. Residuals are the radial difference between observed limb coordinate and
the limb predicted from the best ellipsoidal solution and the image geometry. (b)
Trace of predicted locations on portion of global image mosaic. (Image mosaic from
Roatsch et al. (2009).) Top two profiles go close to center of crater, bottom one
skims the western edge of the crater. Vertical exaggeration is 33.

Table 4

Largest craters on irregularly-shaped satellites.
Satellite T'm, KM Crater diam., km D[rm
Pandora 40.7+1.5 15.4 0.38
Epimetheus 58.1+1.8 94.5 1.63
Janus 895+1.4 52.5 0.59
Telesto 124+04 8.6 0.69
Hyperion 135+4 230 1.70
Phoebe 106.5 £ 0.7 100 0.94

fragmentation experiments showed most likely a/c ratios are ~2
(Fujiwara et al., 1978; Capaccioni et al., 1984), and there is a statis-
tical suggestion from lightcurves that members of older asteroid
families, presumably of fragmentation origin, become more
rounded than younger ones (Szabo and Kiss, 2008). The saturnian
ring-related satellites have a mean a/c of 1.81 +£0.40 (1 s.d.; n=5);
others, excepting Phoebe have a mean a/c of 1.59+0.31 (n=7),
and Mars’ satellites and four inner satellites of Jupiter have a mean
a/cof 1.59 £ 0.22 (n = 6). These comparisons may not be very mean-
ingful due to the scaling differences between the laboratory and the
satellites, and because of the impact and accumulation history of the
satellites. However, most of the small saturnian satellites have
shapes indistinguishable from other small objects, with the possible
exceptions of ring-related ones where the real distinctions depend
upon shape details, not on axial ratios.

4. Summary
Shape solutions for most of the saturnian satellites have been

updated. One notable result is the determination that Rhea has a
hydrostatic shape.
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